Economic calendar: Light macro calendarðŸ—―Wall Street attention shifts to DeepSeek AI impact on markets

15:29 27 āļĄāļāļĢāļēāļ„āļĄ 2025
  • US Index Futures Decline and European Markets Open Lower
  • Investors Assess the Impact of Chinese AI Model DeepSeek V3 on the Market
  • German Ifo Sentiment, US New Home Sales, and Regional Chicago and Dallas Indices in Focus

Today's session is expected to be mild in terms of macroeconomic data, with markets focusing on the U.S. tech sector, which is facing a sell-off due to the success of the Chinese AI model DeepSeek V3. The model was trained at a fraction of the cost compared to its "Western" competitors and delivers results comparable to OpenAI's latest GPT 0-1 model. As a result, investors fear that companies' spending on AI infrastructure could significantly slow down; Nvidia shares are down over 7%. Meanwhile, Chinese indices are gaining; CHN.cash is up nearly 0.7%, compared to a 2.5% drop in the US100.


Economic Calendar (UK Time)

  • 9 AM GMT – Germany, Ifo Index (January):

    • Expectations: Forecast 85, Previous 84.4
    • Current Conditions: Forecast 85.4, Previous 85.1
    • Business Climate: Forecast 84.8, Previous 84.7
  • 1:30 PM GMT – US, Chicago Fed Index:

    • Forecast: -0.06, Previous: -0.12
  • 3 PM GMT – US, New Home Sales:

    • Forecast: 672k, Previous: 664k
  • 3:30 PM GMT – US, Dallas Fed Index:

    • Previous: 3.4

Earnings Report

  • A&T (ATT.US) – Before the U.S. session

āđ€āļĢāļīāđˆāļĄāđ€āļ—āļĢāļ”āļ—āļąāļ™āļ—āļĩāļ§āļąāļ™āļ™āļĩāđ‰ āļŦāļĢāļ·āļ­ āļĨāļ­āļ‡āđƒāļŠāđ‰āļšāļąāļāļŠāļĩāļ—āļ”āļĨāļ­āļ‡āđāļšāļšāđ„āļĢāđ‰āļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡

āđ€āļ›āļīāļ”āļšāļąāļāļŠāļĩ āļĨāļ­āļ‡āļšāļąāļāļŠāļĩāđ€āļ”āđ‚āļĄāđˆ āļ”āļēāļ§āļ™āđŒāđ‚āļŦāļĨāļ”āđāļ­āļ›āļĄāļ·āļ­āļ–āļ·āļ­ āļ”āļēāļ§āļ™āđŒāđ‚āļŦāļĨāļ”āđāļ­āļ›āļĄāļ·āļ­āļ–āļ·āļ­
āļŦāļļāđ‰āļ™:
āļāļĨāļąāļšāđ„āļ›

āļ‚āđˆāļēāļ§āđƒāļ™āļ•āļĨāļēāļ”āļāļēāļĢāđ€āļ‡āļīāļ™

12.09.2025
20:00

🎁 āđ‚āļ›āļĢāļžāļīāđ€āļĻāļĐ! āđ‚āļšāļ™āļąāļŠ 20% 🎁

⏰ āđ€āļĢāļīāđˆāļĄāļ•āļąāđ‰āļ‡āđāļ•āđˆāļ§āļąāļ™āļ™āļĩāđ‰ āļ–āļķāļ‡18/09 👉 āļ„āļĨāļīāļāļ”āļđāļĢāļēāļĒāļĨāļ°āđ€āļ­āļĩāļĒāļ” & āđ€āļ‚āđ‰āļēāļĢāđˆāļ§āļĄāļ•āļ­āļ™āļ™āļĩāđ‰āđ€āļĨāļĒ! *āļŦāļĄāļēāļĒāđ€āļŦāļ•āļļ: āđ‚āļ›āļĢāđ‚āļĄāļŠāļąāđˆāļ™āļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āđ„āļ›āļ•āļēāļĄāļ‚āđ‰āļ­āļāļģāļŦāļ™āļ”āđāļĨāļ°āđ€āļ‡āļ·āđˆāļ­āļ™āđ„āļ‚

17:14

āļ›āļāļīāļ—āļīāļ™āđ€āļĻāļĢāļĐāļāļāļīāļˆ: āļ•āļĨāļēāļ”āļˆāļąāļšāļ•āļēāļ”āļąāļŠāļ™āļĩāļ„āļ§āļēāļĄāđ€āļŠāļ·āđˆāļ­āļĄāļąāđˆāļ™āļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„āļŠāļŦāļĢāļąāļāļŊ āđāļĨāļ°āļāļēāļĢāļ„āļēāļ”āļāļēāļĢāļ“āđŒāđ€āļ‡āļīāļ™āđ€āļŸāđ‰āļ­

āļāļēāļĢāļ‹āļ·āđ‰āļ­āļ‚āļēāļĒāļ§āļąāļ™āļ™āļĩāđ‰āđƒāļ™āļĒāļļāđ‚āļĢāļ›āđāļĨāļ°āļŠāļŦāļĢāļąāļāļŊ āļāļēāļĢāļ‹āļ·āđ‰āļ­āļ‚āļēāļĒāļ§āļąāļ™āļ™āļĩāđ‰āļˆāļ°āđ„āļĄāđˆāļĄāļĩāļāļēāļĢāļ›āļĢāļ°āļāļēāļĻāļ‚āđ‰āļ­āļĄāļđāļĨāđ€āļĻāļĢāļĐāļāļāļīāļˆāļĄāļŦāļ āļēāļ„āļ—āļĩāđˆāļŠāļģāļ„āļąāļ āđāļ•āđˆāļŠāļīāđˆāļ‡āļ—āļĩāđˆāļ™āļąāļāļĨāļ‡āļ—āļļāļ™āđƒāļŦāđ‰āļ„āļ§āļēāļĄāļŠāļ™āđƒāļˆāļ„āļ·āļ­ āļœāļĨāļŠāļģāļĢāļ§āļˆāđ€āļšāļ·āđ‰āļ­āļ‡āļ•āđ‰āļ™āđ€āļ”āļ·āļ­āļ™āļāļąāļ™āļĒāļēāļĒāļ™āļˆāļēāļāļĄāļŦāļēāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāļĄāļīāļŠāļīāđāļāļ™...

13:14

āļ‚āđˆāļēāļ§āđ€āļ”āđˆāļ™: āļāļēāļĢāļ›āļĢāļ°āļĄāļēāļ“āļāļēāļĢ GDP āļ‚āļ­āļ‡āļŠāļŦāļĢāļēāļŠāļ­āļēāļ“āļēāļˆāļąāļāļĢāļ›āļĢāļąāļšāļ•āļąāļ§āļ‚āļķāđ‰āļ™āđ€āļĨāđ‡āļāļ™āđ‰āļ­āļĒ āļ‚āļ“āļ°āļ—āļĩāđˆāļ•āļąāļ§āđ€āļĨāļ‚āļāļēāļĢāļœāļĨāļīāļ•āļ­āļ­āļāļĄāļēāļ•āđˆāļģāļāļ§āđˆāļēāļ—āļĩāđˆāļ„āļēāļ”āļāļēāļĢāļ“āđŒāđ„āļ§āđ‰

āļŠāļŦāļĢāļēāļŠāļ­āļēāļ“āļēāļˆāļąāļāļĢ (UK) āļāļēāļĢāļœāļĨāļīāļ•āļ āļēāļ„āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄ (Manufacturing Production) YoY: +0.2% (āļāđˆāļ­āļ™āļŦāļ™āđ‰āļē 0.0%) MoM: -1.3% (āļ„āļēāļ” 0.1%, āļāđˆāļ­āļ™āļŦāļ™āđ‰āļē...

āđ€āļ‚āđ‰āļēāļŠāļđāđˆāļ•āļĨāļēāļ”āļžāļĢāđ‰āļ­āļĄāļĨāļđāļāļ„āđ‰āļēāļ‚āļ­āļ‡ XTB Group āļāļ§āđˆāļē 1 700 000 āļĢāļēāļĒ

āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļ—āļēāļ‡āļāļēāļĢāđ€āļ‡āļīāļ™āļ—āļĩāđˆāđ€āļĢāļēāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢāļĄāļĩāļ„āļ§āļēāļĄāđ€āļŠāļĩāđˆāļĒāļ‡ āđ€āļĻāļĐāļŦāļļāđ‰āļ™ (Fractional Shares) āđ€āļ›āđ‡āļ™āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļ—āļĩāđˆāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢāļˆāļēāļ XTB āđāļŠāļ”āļ‡āļ–āļķāļ‡āļāļēāļĢāđ€āļ›āđ‡āļ™āđ€āļˆāđ‰āļēāļ‚āļ­āļ‡āļŦāļļāđ‰āļ™āļšāļēāļ‡āļŠāđˆāļ§āļ™āļŦāļĢāļ·āļ­ ETF āđ€āļĻāļĐāļŦāļļāđ‰āļ™āđ„āļĄāđˆāđƒāļŠāđˆāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļ—āļēāļ‡āļāļēāļĢāđ€āļ‡āļīāļ™āļ­āļīāļŠāļĢāļ° āļŠāļīāļ—āļ˜āļīāļ‚āļ­āļ‡āļœāļđāđ‰āļ–āļ·āļ­āļŦāļļāđ‰āļ™āļ­āļēāļˆāļ–āļđāļāļˆāļģāļāļąāļ”
āļ„āļ§āļēāļĄāļŠāļđāļāđ€āļŠāļĩāļĒāļŠāļēāļĄāļēāļĢāļ–āđ€āļāļīāļ™āļāļ§āđˆāļēāđ€āļ‡āļīāļ™āļ—āļĩāđˆāļāļēāļ